Natural killer cell crosstalk with allogeneic human cardiac-derived stem/progenitor cells controls persistence.
نویسندگان
چکیده
AIMS Allogeneic human cardiac-derived stem/progenitor cells (hCPC) are promising candidates for cardiac repair. They interact with T cells, major effectors of the adaptive immune response, inducing 'paracrine' anti-inflammatory effects that could sustain tissue repair/regeneration. Natural killer (NK) cells are major effectors of the innate immune system that might influence the persistence of therapeutic stem/progenitor cells. Therefore, to get through successful clinical translation and anticipate allogeneic hCPC persistence, we defined their crosstalk with NK cells under steady state and inflammatory conditions. METHODS AND RESULTS By using an experimental model of allogeneic hCPC/NK cell interaction, we demonstrate that hCPC moderately trigger cytokine-activated, but not resting, NK cell killing that occurs through formation of lytic immunological synapse and NK cell natural cytotoxicity. Yet, inflammatory context substantially decreases their capacity to set cytokine-activated NK cell functions towards NK cell-cytotoxicity and protects hCPC from NK cell killing. Allogeneic hCPC also restrain NK cell-cytotoxicity against conventional targets and inflammatory cytokine secretion biasing the latter towards anti-inflammatory cytokines. Thus, hCPC are unprivileged targets for allogeneic NK cells and can restrain NK cell functions in allogeneic setting. CONCLUSION Collectively, our data suggest that allogeneic hCPC/innate NK cells crosstalk within injured inflamed myocardium would permit their retention and might contribute to attenuating inflammation and to preventing adverse cardiac remodelling.
منابع مشابه
Human Cardiac-Derived Stem/Progenitor Cells Fine-Tune Monocyte-Derived Descendants Activities toward Cardiac Repair
Cardiac repair following MI relies on a finely regulated immune response involving sequential recruitment of monocytes to the injured tissue. Monocyte-derived cells are also critical for tissue homeostasis and healing process. Our previous findings demonstrated the interaction of T and natural killer cells with allogeneic human cardiac-derived stem/progenitor cells (hCPC) and suggested their be...
متن کاملNeural progenitors derived from human embryonic stem cells are targeted by allogeneic T and natural killer cells
Neural progenitor cells (NPC) of foetal origin or derived from human embryonic stem cells (HESC) have the potential to differentiate into mature neurons after transplantation into the central nervous system, opening the possibility of cell therapy for neurodegenerative disorders. In most cases, the transplanted NPC are genetically unrelated to the recipient, leading to potential rejection of th...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملنقش ترکیب KIR-HLA در پیوند سلولهای بنیادی خونساز
Background : Allogeneic hematopoietic stem cells transplantation (HSCT) is a valuable therapy for refractory acute leukemias, leukemias with a high risk for relapse, myelodysplastic syndromes, and chronic myeloid leukemia. HSCT outcome is dependent on several factors, including the stage of disease, degree of human leukocyte antigen (HLA) identity between donor and recipient, conditioning regim...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 104 2 شماره
صفحات -
تاریخ انتشار 2014